首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27160篇
  免费   2922篇
  国内免费   857篇
耳鼻咽喉   64篇
儿科学   1653篇
妇产科学   1001篇
基础医学   3478篇
口腔科学   328篇
临床医学   2257篇
内科学   4133篇
皮肤病学   190篇
神经病学   1232篇
特种医学   506篇
外国民族医学   3篇
外科学   1788篇
综合类   3160篇
现状与发展   5篇
一般理论   1篇
预防医学   3573篇
眼科学   238篇
药学   4101篇
  10篇
中国医学   1362篇
肿瘤学   1856篇
  2024年   59篇
  2023年   632篇
  2022年   725篇
  2021年   1371篇
  2020年   1230篇
  2019年   1226篇
  2018年   1070篇
  2017年   1162篇
  2016年   1191篇
  2015年   1249篇
  2014年   1828篇
  2013年   2390篇
  2012年   1622篇
  2011年   1676篇
  2010年   1314篇
  2009年   1255篇
  2008年   1350篇
  2007年   1205篇
  2006年   1016篇
  2005年   1010篇
  2004年   786篇
  2003年   774篇
  2002年   613篇
  2001年   531篇
  2000年   415篇
  1999年   355篇
  1998年   279篇
  1997年   240篇
  1996年   195篇
  1995年   199篇
  1994年   216篇
  1993年   173篇
  1992年   153篇
  1991年   139篇
  1990年   120篇
  1989年   86篇
  1988年   86篇
  1987年   80篇
  1986年   84篇
  1985年   132篇
  1984年   118篇
  1983年   97篇
  1982年   76篇
  1981年   76篇
  1980年   65篇
  1979年   65篇
  1978年   50篇
  1977年   28篇
  1976年   34篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
31.
32.
33.
34.
35.
BackgroundIt remains unknown how biomechanics change in posterior lateral knee using different fixation techniques in lateral meniscal allograft transplantation (MAT) during simulated toe-touch partial weight-bearing. This study aimed to compare the biomechanical effects on posterior knee between bridge and bone plug fixation in lateral MAT.MethodsIntact knee, bone bridge fixation, and bone plug fixation were tested with 500 N of axial load during knee flexion at 0°, 30°, and 60°, which simulated toe-touch partial weight-bearing. Contact area and peak pressure were assessed on posterior knee and the shift of peak pressure position were measured.ResultsOn the posterior lateral compartment, the contact mechanics of bone bridge fixation were similar to those of the intact knee (all P-values > 0.05), but its peak pressure was higher than that of intact knee at 60° (P = 0.002). For bone plug fixation, the contact area of the posterior lateral knee was significantly lower than those of intact knee and bone bridge fixation at 30° and 60° (all P-values < 0.05). The peak pressure of the posterior lateral knee was higher than that of the intact knee at all flexions and higher than that of bone bridge fixation at 30° and 60° (all P-values < 0.05). The peak pressure position of bone plug fixation shifted more laterally and posteriorly compared with intact knee and bone bridge fixation during knee flexion.ConclusionBone bridges could maintain posterior knee biomechanics better than bone plug fixation during knee bending during partial weight-bearing.  相似文献   
36.
目的探讨以指南为依据的肿瘤放疗患者营养教育咨询方案  在降低质子重离子治疗期间显著体重下降发生率方面的有效性。方法以质子重离子治疗期间的肿瘤放疗患者为研究对象  采用历史对照研究设计  方案实施前以年月至月收治的患者为对照组  方案实施后以年月至月收治的患者为试验组。对照组在方案实施前仍实行原有的常规护理  试验组给予以指南为依据的营养教育咨询方案。结果本研究共纳入例肿瘤患者  其中对照组例  试验组例  两组平均年龄为岁和岁  %和%为头颈部肿瘤患者。放疗期间对照组平均体重下降. kg  平均体重丢失.%  显著体重下降发生率为.% 《肿瘤代谢与营养电子杂志》2021,8(1):54-57
目的探讨以指南为依据的肿瘤放疗患者营养教育咨询方案,在降低质子重离子治疗期间显著体重下降发生率方面 的有效性。方法以质子重离子治疗期间的肿瘤放疗患者为研究对象,采用历史对照研究设计,方案实施前以2016年1月至12月 收治的患者为对照组,方案实施后以2018年1月至8月收治的患者为试验组。对照组在方案实施前仍实行原有的常规护理,试验 组给予以指南为依据的营养教育咨询方案。结果本研究共纳入713例肿瘤患者,其中对照组374例,试验组339例,两组平均年 龄为54岁和53岁,45%和49%为头颈部肿瘤患者。放疗期间对照组平均体重下降0.51 kg,平均体重丢失0.75%,显著体重下降 发生率为11.2%(42例);试验组体重下降0.66 kg,平均体重丢失0.90%,显著体重下降发生率为9.4%(32例)。在控制放疗总剂量、 射线类型、肿瘤部位、同期化疗和性别的混杂因素影响后,试验组显著体重下降的风险下降了34%(OR=0.66,95%CI=0.48~0.91)。 结论以指南为依据的肿瘤放疗患者营养教咨询方案能够帮助改善质子重离子治疗期间的患者营养状态,有效降低显著体重下 降的风险。  相似文献   
37.
38.
我国癌症发病率与死亡率中肺癌均高居第一位,其中非小细胞肺癌(NSCLC)占肺癌85%以上, NSCLC传统治疗方式包括手术、化疗、放疗等。近十几年来,NSCLC相关临床治疗取得巨大突破,代表性治疗新方案即为分子靶向治疗和免疫治疗,然而,上述治疗方式成功发挥治疗作用前提和关键则是精准选择NSCLC患者治疗优势人群。分子影像可以在活体状态下,应用影像学方法对人或动物体内细胞和分子水平生物学过程进行成像、定性和定量研究,着眼于生物过程基础变化而不是生物变化最终结果,进而实现精准选择治疗优势人群、分子水平精准监测治疗效果、及时进行预后评估等目的,对分子靶向治疗以及免疫治疗意义重大。该文综述分子影像在NSCLC分子靶向治疗以及免疫治疗中开展的相关研究。  相似文献   
39.
Molecular radiotherapy is a rapidly developing field with new vector and isotope combinations continually added to market. As with any radiotherapy treatment, it is vital that the absorbed dose and toxicity profile are adequately characterised. Methodologies for absorbed dose calculations for radiopharmaceuticals were generally developed to characterise stochastic effects and not suited to calculations on a patient-specific basis. There has been substantial scientific and technological development within the field of molecular radiotherapy dosimetry to answer this challenge. The development of imaging systems and advanced processing techniques enable the acquisition of accurate measurements of radioactivity within the body. Activity assessment combined with dosimetric models and radiation transport algorithms make individualised absorbed dose calculations not only feasible, but commonplace in a variety of commercially available software packages. The development of dosimetric parameters beyond the absorbed dose has also allowed the possibility to characterise the effect of irradiation by including biological parameters that account for radiation absorbed dose rates, gradients and spatial and temporal energy distribution heterogeneities. Molecular radiotherapy is in an exciting time of its development and the application of dosimetry in this field can only have a positive influence on its continued progression.  相似文献   
40.
Binding of the spike protein of SARS-CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) receptor triggers translocation of the virus into cells. Both the ACE2 receptor and the spike protein are heavily glycosylated, including at sites near their binding interface. We built fully glycosylated models of the ACE2 receptor bound to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Using atomistic molecular dynamics (MD) simulations, we found that the glycosylation of the human ACE2 receptor contributes substantially to the binding of the virus. Interestingly, the glycans at two glycosylation sites, N90 and N322, have opposite effects on spike protein binding. The glycan at the N90 site partly covers the binding interface of the spike RBD. Therefore, this glycan can interfere with the binding of the spike protein and protect against docking of the virus to the cell. By contrast, the glycan at the N322 site interacts tightly with the RBD of the ACE2-bound spike protein and strengthens the complex. Remarkably, the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody. By mapping the glycan binding sites, our MD simulations aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.

Angiotensin-converting enzyme 2 (ACE2) is an enzyme that catalyzes the hydrolysis of angiotensin II into angiotensin (17) to counterbalance the ACE receptor in blood pressure control (1). A single transmembrane helix anchors ACE2 into the plasma membrane of cells in the lungs, arteries, heart, kidney, and intestines (2). The vasodilatory effect of ACE2 has made it a promising target for drugs treating cardiovascular diseases (3).ACE2 also serves as the entry point for several coronaviruses into cells, including SARS-CoV and SARS-CoV-2 (46). The binding of the spike protein of SARS-CoV and SARS-CoV-2 to the peptidase domain (PD) of ACE2 triggers endocytosis and translocation of both the virus and the ACE2 receptor into endosomes within cells (4). The human transmembrane serine protease 2, TMPRSS2, primes spike for efficient cell entry by cleaving its backbone at the boundary between the S1 and S2 subunits or within the S2 subunit (4). The structure of the ACE2 receptor in complex with the SARS-CoV-2 spike receptor binding domain (RBD) (79) reveals the major RBD interaction regions as helix H1 (Q24–Q42), a loop in a beta sheet (K353–R357), and the end of helix H2 (L79–Y83). With a 4-Å heavy-atom distance cutoff, 20 residues of ACE2 interact with 17 residues of the RBD, forming a buried interface of ∼1,700 Å2 (7).The structure of full-length ACE2 has been resolved in complex with B0AT1 (also known as SLC6A19) (9). B0AT1 is a sodium-dependent neutral amino acid transporter (10). ACE2 functions as chaperone for B0AT1 and is responsible for its trafficking to the plasma membrane of kidney and intestine epithelial cells (11). Although it was speculated that B0AT1 prevents ACE2 cleavage by TMPRSS2 and thus could suppress SARS-CoV-2 infection (9, 12), other studies showed that SARS-CoV-2 can infect human small intestinal enterocytes where ACE2 is expected to be in complex with B0AT1 (13).Both the ACE2 receptor and the spike protein are heavily glycosylated. Several glycosylation sites are near the binding interface (7, 9, 14, 15). Whereas the focus has largely been on amino acid interactions in the ACE2–spike binding interface (16, 17), the role of glycosylation in binding has been recognized (7, 1820). The extracellular domain of the ACE2 receptor has seven N-glycosylation sites (N53, N90, N103, N322, N432, N546, and N690) and several O-glycosylation sites (e.g., T730) (9, 14). Among ACE2 glycosylation sites, the only well-characterized position regarding the effect on the spike binding and viral infectivity is N90. It is known from earlier SARS-CoV studies that glycosylation at the N90 position might interfere with virus binding and infectivity (21). Also, recent genetic and biochemical studies showed that mutations of N90, which remove the glycosylation site directly, or of T92, which remove the glycosylation site indirectly by eliminating the glycosylation motif (NXT), increase the susceptibility to SARS-CoV-2 infection (22, 23).We use extensive molecular dynamics (MD) simulations to gain a detailed molecular-level understanding of how ACE2 glycosylation impacts the host–virus interactions. Glycosylation sites N90 and N322 of human ACE2 emerge as major determinants of its binding to SARS-CoV-2 spike. Remarkably, glycans at these sites have opposite effects, interfering with spike binding in one case, and strengthening binding in the other. Our findings provide direct guidance for the design of targeted antibodies and therapeutic inhibitors of viral entry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号